Computing Community Consortium Blog

The goal of the Computing Community Consortium (CCC) is to catalyze the computing research community to debate longer range, more audacious research challenges; to build consensus around research visions; to evolve the most promising visions toward clearly defined initiatives; and to work with the funding organizations to move challenges and visions toward funding initiatives. The purpose of this blog is to provide a more immediate, online mechanism for dissemination of visioning concepts and community discussion/debate about them.


CCC’s Weekly Computing News: Confidential Computing

May 31st, 2024 / in AI, CCC, Privacy / by Petruce Jean-Charles

This week we discovered an interesting article from ACM Queue, a bimonthly magazine of the Association for Computing Machinery (ACM). This article, written by researchers Jinnan Guo, Peter Pietzuch, Andrew Paverd, and Kapil Vaswanin, explores how as the demand for trustworthy AI systems grows, the confluence of Federated Learning (FL) and Confidential Computing emerges as a promising solution. 

Trustworthy AI Using Confidential Federated Learning

The article emphasizes the crucial need to ensure the trustworthiness of AI systems, particularly in safeguarding personal information. It highlights two key methodologies, Federated Learning (FL) and Confidential Computing, as effective approaches to achieving this goal. While FL addresses privacy concerns by enabling collaborative model training without direct data sharing, it introduces trust issues between devices and the central server. On the other hand, Confidential Computing secures data and code using specialized hardware but requires trust in the centralized training process. Introducing a novel concept, Confidential Federated Learning (CFL), merges FL with confidential computing to ensure data safety while maintaining transparency and accountability. 

By integrating FL with Trusted Execution Environments (TEEs) and commitments, CFL enhances security, privacy, transparency, and accountability. Measures like code-based access control and model confidentiality robustly protect data and models, making CFL the preferred approach for deploying FL and enhancing AI system integrity. This convergence has the potential to instill trust among stakeholders and facilitate responsible AI deployment across diverse domains, ultimately strengthening FL against malicious exploitation and ensuring compliance with AI regulations.

Read the full article here.

CCC’s Weekly Computing News: Confidential Computing

Comments are closed.