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Fundamental Processes in Biology: (1) Growth
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Fundamental Processes in Biology: (2) Transformation

TRANSFORMATION (i.e. CHANGE OF STATE)

MATHEMATICAL FORMS e.g.:
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Growth and Transformation Combined
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Growth is a concentrating operator
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Transformation is a dispersing operator
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Growth and Transformation combined create a search
operator
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Basic question regarding the information stored by organisms:

Eigen and Schuster (1977) in “The Hypercycle: A principle of
natural self-organization.”

What is the relationship between
1 mutation,

2 natural selection, and

3 the accumulation of information in the genome?
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The Quasispecies, Eigen and Schuster (1977)

“A quasi-species is defined as a given distribution of
macromolecular species with closely interrelated
sequences, dominated by one or several (degenerate)
master copies. . . .

Most important for Darwinian behavior are the criteria
for internal stability of the quasi-species.
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The Quasispecies, Eigen and Schuster (1977)

“If these criteria are violated, the information stored in
the nucleotide sequence of the master copy will
disintegrate irreversibly leading to an error
catastrophe.

As a consequence, selection and evolution of RNA or
DNA molecules is limited with respect to the amount
of information that can be stored in a single replicative
unit.”
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Limits on the Length of Replicating Sequences

Eigen and Schuster (1977, p. 555):
“There is a threshold-relationship for the rate of
mutation, at which evolution is fastest, but which must
not be surpassed unless all the information thus far
accumulated in the evolutionary process is to be lost.”

“The number of molecular symbols of a
self-reproducible unit is restricted, the limit being
inversely proportional to the average error rate per
symbol,” p.
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Li et al. (2015) Statistical properties and error threshold of
quasispecies on single-peak Gaussian-distributed fitness
landscapes

The results show that for different values of the fluctuation
strength, the random fitnesses follow the Gaussian distributions,
and the goodness of fitting for all of the random variables is above
0.99. By numerical simulations, the relative concentration ensem-
ble for each class is generated. Based on the ensemble, the features
of the error threshold and the quasispecies in the random Eigen
model can be investigated.

3.1. Characteristics of the error threshold in the random Eigen model

For the deterministic Eigen model ðd¼ 0Þ, Swetina and Schuster
(1982) obtained the distribution of the relative concentration of
each class versus the mutation rate, as shown in Fig. 1(a). Number
0 in the figure represents the master class, and 1, 2… N denote
different mutant classes. In the deterministic Eigen model with a
single peak fitness landscape, the evolution process of the popula-
tion with mutation rate is a mixing process between the master
and mutant sequences. The master sequence melts gradually in
the mutant sequences with increasing mutation rate and comple-
tely dissolves into the mutant sequences at the error threshold.
The error threshold for N¼20 is located at mutation rate μ¼ 0:112,
which is a sharp point similar to a phase transition in physics. Over
the error threshold, the sequences have negligibly small concen-
trations (roughly speaking, zero concentrations) and the comple-
mentary classes get together because of the same degeneracy.
Here complementary classes are the two classes Ii and Ij with
iþ j¼N.

In the random Eigen model, the averaged relative concentra-
tions for each class ensemble versus increasing mutation rate are
computed and shown in Fig. 1(b) (d¼0.1) and Fig. 1(c) (d¼0.2).
The error threshold in the random Eigen model becomes a smooth
crossover region. For instance, the crossover region in the case of
d¼ 0:1 is located between 0.112 and 0.119. The crossover region
becomes wider as the fluctuation strength increases. One can
understand the above phenomenon as follows. The randomization

of the fitness landscape modifies the relative concentration of a
sequence from a specific value into an ensemble consisting of
various relative concentration values for a given mutation rate
value. The probability distribution of those concentration values
appears as a concentration wave packet with certain width. The
concentration wave packets with certain widths facilitate their
mixing, which results in the occurrence of the dissolution at a
lower mutation rate than the error threshold. This implies that the
error threshold extends downward. On the other hand, above the
error threshold, the concentration wave packets with certain
widths have some components with non-zero concentrations. This
implies that the error threshold extends upward. Therefore, the
extension of the error threshold completely results from the
fitness landscape randomization. With the increment of the
fluctuation strength of the fitness landscape, the wave packets
get wider and wider, and the range of the crossover region
becomes larger and larger. That is to say the width of the error
threshold increases with the fluctuation strength.

The upper limit of the crossover region obviously surpasses the
error threshold given by the deterministic Eigen model. This fact
should be considered when dealing with the practical problems of
species evolution. Although the error threshold changes signifi-
cantly in the random Eigen model, the relative concentrations in
the other regions are basically consistent with those in the
deterministic Eigen model, implying that they are relatively stable
against the fitness fluctuation.

To measure quantitatively the broadening effect of the error
threshold, the range of the crossover region is defined. The starting
point of the crossover region is the error threshold given by the
deterministic Eigen model. And the end point is the position
where the relative difference in the relative concentration of two
complementary classes is less than 0.01. The relative difference c is
given by

c¼
xi%xj

ðxiþxjÞ=2
ð5Þ
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Fig. 1. The relative concentrations of each class versus the mutation rate in equilibrium. (a) The distribution of relative concentration in the deterministic Eigen model
ðd¼ 0Þ. (b) and (c) those in the random Eigen model with d¼ 0:1 and d¼ 0:2 respectively. (d) The relationship between the width of the crossover region and the fluctuation
strength of the random variables is basically linear.

D.-F. Li et al. / Journal of Theoretical Biology 380 (2015) 53–59 55
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Papers per year with “error catastrophe” or “error threshold”
AND (quasispecies OR Eigen)

1980 1990 2000 2010

100

200
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400

1 to 15 citations per year20 years:
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Hermisson et al. (2002) Mutation–Selection
Balance: Ancestry, Load, and Maximum Principle

Four distinct threshold phenomena from increasing mutation
rates:

1 “A kink in the population mean fitness,

2 the loss of the wildtype from the population,

3 complete mutational degradation [error catastrophe],
and

4 a jump in the population mean of the mutational
distance”

In Eigen and Schuster’s fitness landscape, these four “error
thresholds” happen to coincide. But they may not even exist
in the general case.
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The Lore: These insights and caveats still have not
penetrated the literature

Ten years after Hermisson et al. (2002) we still find “the lore”:
e.g. Barbieri (2012) Code biology–A new science of life

“Eigen and Schuster (1977) showed that the limit
in question is indeed a universal necessity because
it is a consequence of fundamental theorems that
apply to all self-replicating systems.
The maximum length of the molecules is deter-

mined by the replication errors that are inevitably
present in any replication process, because beyond
that limit the system is overtaken by a runaway
error catastrophe and collapses.”
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“Error catastrophe” is an artifact of the needle-in-a-haystack
landscape

FITNESS

GENOTYPE SPACE
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Sarkisyan et al. (2016) Local fitness landscape of the green
fluorescent protein (Aequorea victoria)
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Classical multiplicative fitness landscapes defy the lore of the
error catastrophe

Multiplicative Fitness Landscape Model (figurative picture)

FITNESS

GENOTYPE SPACE
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Dynamical system combining mutation and natural selection:

d
dt

xi(t) =
n∑

j=1

Mijwjxj(t)−
(

n∑

j=1

wjxj(t)

)
xi(t)

or in vector form
d
dt
x(t) = MDx(t)− w(x(t)) x(t)

where
x(t) — vector of genotype frequencies at time t,
M — transmission matrix, Mij is mutation rate j→i ,
D = diag[wi ] — diagonal matrix of fitnesses wi , and
w(x(t)) =

∑n
i=1 xi(t)wi — population mean fitness at

time t.
Assumptions: Infinite population, arbitrary haploid selection,
no recombination.
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Mutation-selection balance

The population evolves to a stationary distribution, x̂, at

which
dx(t)
dt

= 0, so the equilibrium x̂ satisfies

M(µ)Dx̂ = w(x̂) x̂, (1)

hence
x̂ is the quasispecies — the Perron vector (dominant
eigenvector) of matrix M(µ)D, and

w(x̂) = r(M(µ)D) is the Perron root (dominant
eigenvalue and spectral radius) of M(µ)D.

Extinction condition: Mean fitness is less than one:
w(x̂) = r(M(µ)D) < 1. (A 5th independent “error
threshold”)

Lee Altenberg | How Much Information Can Natural Selection Maintain? | 20/42
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Classical multiplicative fitness landscapes defy the lore of the
error catastrophe

Multiplicative Fitness Landscape Model (figurative picture)

FITNESS
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Reprise: The lore of the error catastrophe

Lore (Tripathi et al., 2012) :

“When the mutation rate is increased beyond a
critical value, called the error threshold, the qua-
sispecies delocalizes in sequence space, inducing a
severe loss of genetic information—a phenomenon
termed error catastrophe—and compromising the
viability of the viral population.”
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Classical multiplicative fitness landscapes defy the lore of the
error catastrophe

Multiplicative fitness counterexample: As the mutation rate
increases:

1 genotype and allele frequencies change gradually
2 the mean fitness of the population declines gradually
3 the information content of the population declines

gradually
4 no limit is placed on the length of sequences that carry

genetic information.
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Multiplicative Fitnesses

The diagonal matrix of fitnesses is represented as a Kronecker
product,

D =
L⊗

ξ=1

[
w 0
0 1

]
.

The fitness of the binary sequence is

wi = wdi × 1L−di = wdi ,

where di is the number of 0 alleles in the L-locus sequence.
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Independent Multilocus Mutation

Classical model of mutations occurring independently over L
sites in a genome at mutation rate µ:
The mutation matrix M(µ) = [Mij(µ)] may be represented
using the Kronecker product.
A example with 2-alleles at L loci:

M(µ) =
L⊗

ξ=1

[
(1− µ)

[
1 0
0 1

]
+ µ

[
0 1
1 0

]]
(2)
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The equilibrium relation then becomes

M(µ)Dx̂ =
L⊗

ξ=1

[
(1− µ)

[
1 0
0 1

]
+ µ

[
0 1
1 0

]] L⊗

ξ=1

[
w 0
0 1

]
x̂

=
L⊗

ξ=1

{[
(1− µ)

[
1 0
0 1

]
+ µ

[
0 1
1 0

]] [
w 0
0 1

]}
x̂

= r(M(µ)D) x̂,

where r(M(µ)D) is the spectral radius of M(µ)D — the
asymptotic aggregate growth rate of the quasispecies.
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Because of the Kronecker product form, the equilibrium
distribution x̂ also factors into

x̂ =
L⊗

ξ=1

ĝ =
L⊗

ξ=1

[
ĝ0
ĝ1

]
,

where ĝ0 = 1− ĝ1, solves the single-locus equilibrium relation
(
(1−µ)

[
1 0
0 1

]
+µ

[
0 1
1 0

])[
w 0
0 1

] [
ĝ0
ĝ1

]
= w(ĝ)

[
ĝ0
ĝ1

]
,

with w(ĝ) = wĝ0 + ĝ1.
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The closed form solution (Woodcock and Higgs, 1996) is

ĝ =

[
ĝ0
ĝ1

]
=




1
2
+
µ(w + 1)− c
2(1− w)

1
2
− µ(w + 1)− c

2(1− w)


 ,

where c :=
√
(1− µ)2(w + 1)2 − 4w(1− 2µ).

Lee Altenberg | How Much Information Can Natural Selection Maintain? | 28/42



INTRO LORE MODEL Example 1 Example 2 References Appendices

Single-locus equilibrium frequency of allele 1 plotted as a
function of mutation rate µ and selection coefficient w

wµ

ĝ1

MUTATION RATE
FITNESS
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Quantifying Genetic Information in a Population

The Kullback-Leibler divergence between stationary
distributions with and without natural selection acting
(Strelioff et al., 2010; Schuster, 2013):

I(x̂) :=DKL(x̂ ||π) = DKL(x̂ || 2−L e)

=
2L∑

i=1

x̂i log2
x̂i
2−L

= L+
2L∑

i=1

x̂i log2 x̂i

= L−H(x̂),
where

π is the stationary distribution without selection

x̂ is the stationary distribution with selection

H(x̂) is the Shannon entropy of x̂, and e is the vector of
ones.
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Genetic information at mutation-selection balance, x̂

Equilibrium frequencies: x̂i = ĝdi
0 ĝL−di

1 = (1− ĝ1)
di ĝL−di

1 .

Information generated by natural selection:

I(x̂) = L+
2L∑

i=1

(1−ĝ1)di ĝL−di
1 [di log2(1− ĝ1)+(L− di) log2 ĝ1]

= L I(ĝ).

Genetic information in the population is simply the genetic
information at each locus times the number of loci L.
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Single-locus genetic information as a function of mutation rate
µ and selection coefficient w .

wµ

I(ĝ)

MUTATION RATE
FITNESS
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Genetic information maintained in a genome of length 10,000
bases, mutation rate= 0.1 per base

Number of bits maintained by selection as a function of
per-base selection coefficient w .
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Genetic information maintained in a genome of length 10,000
bases, mutation rate= 0.01 per base

Number of bits maintained by selection as a function of
per-base selection coefficient w .

w
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Example 2: A Quasispecies “Yo-Yo”

Genotype fitness is a function of the number of mutations
to the “master sequence” 000000000000000.

15 loci, 2 alleles per locus, i.i.d. mutation at rate µ per
locus.
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Result: Multiple, Reversing “Error Catastrophes”
— A “Yo-Yo”
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Result: Multiple, Reversing “Error Catastrophes”
— A “Yo-Yo”
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Fitness Declines Smoothly Despite Four Error
Thresholds

Drama in the
genotype
frequencies
contrasts with

Smooth decline of
the quasispecies
fitness r(M(µ)D)

Illustrating
theorems in A.
(2011, 2015)
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Genetic Information and Mutation Rates

0.01 0.02 0.03 0.04 0.05 0.06

5

10

15 Genetic Information 
(in bits)

=
15X

i=0

x̂i(µ) log2

x̂i(µ)

⇡i

Stationary Genotype 
Frequencies (for 

reference, not to scale)

MUTATION RATE µ !

Excess 
information 
loss exactly 

at error 
threshold

Sequence information in the population declines
(‘delocalizes’) gradually with mutation rate, except at the
error thresholds where it dips but bounces back again
with increasing mutation.
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Conclusion 1

It is not in general true that:
1 there is a critical mutation rate, an “error threshold”

above which all genetic information in a population is lost
— the “error catastrophe”

2 the mutation rate restricts the length of sequences that
can be replicated.

Thus, claims in the literature that viruses “replicate near the
error threshold” may not even be defined.
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Conclusion 2

Instead, it is possible (shown by the multiplicative landscape
and other examples (Schuster, 2013)) that:

1 the genetic information in a population degrades
gradually as a function of mutation rate, and

2 even at very high mutation rates, long sequences may be
reproduced which have low genetic information density,

3 but which have high total information content.
This is just an illustrative example. Characterizing the
information dynamics of different fitness landscapes remains
an unexplored open question.
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MORE QUOTES
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Arias et al. (2013) Molecular dissection of a viral quasispecies
under mutagenic treatment: positive correlation between
fitness loss and mutational load:

“Theoretical predictions suggested that these error
frequencies in RNA viruses are near to a maximum
value compatible with maintaining genetic informa-
tion and therefore, virus viability, namely the error
threshold.”
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Krakauer and Rockmore (2015) The Mathematics of
Adaptation (Or the Ten Avatars of Vishnu)

“excessive mutation can abrogate hill climbing,
replacing selection with diffusion over the simplex

This is known as the ‘error threshold.’

For any choice of fitness function, the regime p > 1/L
will completely ‘flatten’ the landscape, eliminating
adaptation altogether .”
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